On weakly completely mixed bimatrix games
نویسندگان
چکیده
منابع مشابه
Perturbation Theory of Completely Mixed Bimatrix Games
A twoperson non-zero-sum bimatrix game (A, B) is defined to be completely mixed if every solution gives a positive probability to each pure strategy of each player. Such a game is defined to be nonsingular if both payoff matrices are nonsingular. Suppose that A is perturbed to A + aG and B is perturbed to B + aH, where C and H are matrices of the same size as A and B, and OL is a small real num...
متن کاملComputation of Completely Mixed Equilibrium Payoffs in Bimatrix Games
Computing the (Nash) equilibrium payoffs in a given bimatrix game (i.e., a finite two-person game in strategic form) is a problem of considerable practical importance. One algorithm that can be used for this purpose is the Lemke-Howson algorithm (Lemke and Howson (1964); von Stengel (2002)), which is guaranteed to find one equilibrium. Another, more elementary, approach is to compute the equili...
متن کاملOn Some Saddle Point Matrices and Applications to Completely Mixed Equilibrium in Bimatrix Games
Introduction The first part of the paper presents several properties of saddle point matrices with two vector blocks. In these block matrices, the top-left block is a real square matrix , the topright block is the column vector with all entries , the bottom-left block is transposed, and the bottom-right block has the single entry . If is symmetric, the saddle point matrix can be interpreted as ...
متن کاملBimatrix Games
These are two person non-zero(constant)-sum games in which each player has finitely many pure strategies. We call these non-zero(constant)sum games because the interests of the players is not required to be exactly opposed to each other. Of course, these include zero(constant)-sum games and are a true generalization of zero(constant)-sum games. But the methods used to analyze them are different...
متن کاملInterval valued bimatrix games
Payoffs in (bimatrix) games are usually not known precisely, but it is often possible to determine lower and upper bounds on payoffs. Such interval valued bimatrix games are considered in this paper. There are many questions arising in this context. First, we discuss the problem of existence of an equilibrium being common for all instances of interval values. We show that this property is equiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1990
ISSN: 0024-3795
DOI: 10.1016/0024-3795(90)90309-z